Resources
/
Technical Toolbox
/
Thermoset vs Thermoplastic: What’s the difference?

Thermoset vs Thermoplastic: What’s the difference?

In plastic injection moulding, there are two key classes of plastics that are readily utilised to create many popular everyday products we know and use today: Thermoplastics and Thermosets. Understanding these two classes and what they can offer will help determine which material is best to use for your project. This guide will discuss the properties, benefits, and performance of both thermosets and thermoplastics to help you with sourcing decisions and product designs.

Jack Childerstone.
Jack Childerstone
Published
March 2, 2022
/
Updated
September 12, 2025
A group of colourful building blocks.

What is a thermoset?

Thermosets are a type of polymer that undergo a chemical reaction when heated, creating a three-dimensional network of bonded molecules. This process is irreversible, meaning once thermosets have been set, they cannot be melted or reshaped. Thermosets are typically hard, strong, and have excellent resistance to heat and chemicals.

A thermoset is a polymer that forms irreversible chemical bonds during the curing process. Unlike thermoplastics that can be melted and remould multiple times, thermosets (as their names suggest) are set in a permanent physical and chemical composition after the first curing process. This occurs as polymers in the material ‘cross-link’, performing an unbreakable, irreversible bond. This unique feature makes thermosetting polymers an excellent choice for parts that need to have excellent dimensional stability at elevated temperatures.

Discover more about our injection moulding services

{{cta-banner}}

Thermosetting Polymers

Thermosetting polymers, also known as thermosets, are a type of polymer that undergoes a chemical reaction when heated, resulting in a three-dimensional network of bonded molecules. This process is irreversible, meaning that once the thermoset has been formed, it cannot be melted or reshaped.

What is the Difference Between Thermoplastic and Thermosetting Plastic?

Thermoplastics and thermosetting plastics are two distinct types of polymers with different behaviours under heat. Thermoplastics can be heated, cooled and reshaped repeatedly without altering their chemical structure. In contrast, thermosetting plastics undergo a chemical change when heated, forming irreversible bonds that set their shape permanently.

Difference between thermoplastics and thermosets

The critical difference between thermoplastics and thermosets is how the materials behave during the curing process. Thermosets strengthen when cured but form chemical bonds that make them impossible to remould. Thermoplastics do not form any chemical bond when curing, making them re-mouldable and recyclable. This three-dimensional bonding in thermosets makes them stronger and more heat resistant than thermoplastics.

Thermosets' ability to retain their strength and geometry when exposed to elevated temperatures set them apart from thermoplastics. Thermosets will often degrade before melting when exposed to excess heat. These properties mean plastics can be used as a low-cost replacement for metals in some applications.

In a nutshell, thermosets generally have greater physical properties than thermoplastics; however they cannot be remoulded and recycled.

Thermoset materials

  • Melamine
  • Epoxy
  • Polyester
  • Silicone
  • Urea-formaldehyde
  • Polyurethane
  • Polytetrafluoroethylene (PTFE)
  • Polyvinylidene fluoride (PVDF)

Thermoplastic materials

  • ABS
  • Acrylic (PMMA)
  • Polyvinyl chloride (PVC)
  • Nylon
  • Polypropylene (PP)
  • Polycarbonate (PC)
  • Acetal Copolymer Polyoxymethylene (POM-C)
  • Acetal Homopolymer Polyoxymethylene (POM-H)

Unsure of the best material to use? You can find out more about the best materials to injection mould in our guide: Choosing the right injection moulding material.

Advantages of thermosets

✅ High-temperature resistance

✅ Good chemical resistance

✅ Excellent dimensional stability

✅ High Strength, toughness and rigidity

Disadvantages of thermosets

❌ Non-recyclable (cannot be remoulded)

❌ Poor thermal conductivity (e.g. for electrical housing)

❌ Brittle

Advantages of thermoplastics

✅ Eco-friendly and recyclable

✅ Excellent impact resistance

✅ Better aesthetic finishing

✅ Good adhesion to metals

Disadvantages of thermoplastics

❌ Can degrade when exposed to UV

❌ May soften when exposed to heat

❌ Can be more expensive than a thermoset

Example of a thermoset in use

Silicon is an excellent example of a thermoset that has a wide range of applications, its most popular being in the electrical industry. The cross-linking bonds discussed earlier make silicon excellent at remaining stable over a wide temperature range (up to 250 degrees C). Partnered with its flexibility, tear strength and chemical resistance, silicon is ideally suited for the demands of electrical wire insulation.

A bunch of wires that are on top of each other

Example of thermoplastic in use

One of the most popular thermoplastic parts produced has to be the LEGO brick. LEGO is made from acrylonitrile butadiene styrene, ABS for short. ABS is a great choice of material as it is strong, has great dimensional stability, so bricks fit together and are resistant to colour fading. The one downside of ABS is that you cannot manufacture transparent parts, so polycarbonate (another thermoplastic) is used to create transparent bricks.

A group of legos with a white background

To find more useful engineering information, head over to our guides page to learn how to perfectly design your parts for production! Or, if your parts are all ready for production, get a free 24-hour quote from us now. Injection moulding is not always suitable for plastics, we do offer a CNC Machining Service and a 3D Printing Service. Together CNC machining, 3D printing and injection moulding are a family of different technologies that can be used to manufacture plastic parts.

A pair of metal latches on a black background

Leave it to our manufacturing specialists

Get a 24 hour, engineer made quote and design review to start your manufacturing project off on the right foot

A man wearing glasses and a white shirt

Get your production-ready quote in 24 hours

All projects are reviewed by real engineers to ensure accuracy, catch mistakes and unlock DFM improvements

Jack Childerstone.
Jack Childerstone
/
Senior Project Manager

Has a degree in Aerospace Engineering and is a Bike fanatic 🚴🏼

Working with Get It Made for all our prototyping was an absolute pleasure. Next to immediate response, fast lead times, often arriving before the stated date. Their attention to detail and customer service were second to none. and all at the most competitive price point that could't be beaten in the U.K.
Ben Coughlan
Ben Coughlan
Director - Sneek Films Ltd
Precision machined metal cube with multiple threaded circular holes
Get It Made are at top of their game when it comes to reliability and quality. We trust Get It Made to deliver parts on time and within tolerance. We can't speak highly enough of their customer service. Get It made are quick to reply to enquiries and keep you well informed throughout the whole process.
Max Blake
Max Blake
Designer - Max Blake Design
Metallic cube with multiple precision-machined cylindrical holes
Get It Made were able to deliver an accurate and quick service delivering a set of high fidelity prototypes expertly finished, ready for user testing. They offered a range of fabrication options and materials to choose from, tailoring the service to our specific budget, timeframe and material requirements. Can't recommend enough.
Finlay Page
Finlay Page
Head of Product - Robotical Ltd
Precision machined metal cube with multiple threaded circular holes
Get It Made have over the years been able to take on from simplest to the most complicated of jobs with ease, providing expert advice, good prices and reliable lead times. No job has been too big or too small, either in size or volume. We would strongly recommend Get It Made; you won't be disappointed!
Stuart Leslie
Stuart Leslie
Director - Bann Engineering
Metallic cube with precise machined holes and threaded openings
We initially started working with Get It Made, as we needed a high quality product developed within a very short lead time. The entire process went very smoothly and we received the products ahead of schedule. We were pleased with the final results and we found working with Luke very easy, as he offered good technical advice.
Tom Butterfield
Tom Butterfield
Designer - Tom Dixon
Precision machined metal cube with multiple threaded circular holes
When we were looking to have parts manufactured, we had tight deadlines with an even tighter budget. Get It Made understood our constraints and worked with us closely to get our parts to a higher standard than we expected. I can not recommend Get It Made enough. They are professional, communicative, and the parts are fantastic.
Ross Embleton
Ross Embleton
Head Of Research And Development - Heliguy
Precision machined metal cube with multiple threaded cylindrical holes
The Get It Made team are very responsive and knowledgeable, fully owning a project throughout, providing superb communication. Transparent pricing structure and rapid quotation turnaround is by far the quickest I've experienced, reducing time to manufacture. Get It Made are a pleasure to work with.
Ollie Masters
Ollie Masters
Lead Process Engineer - Karakuri
Metallic cube with multiple precision-machined cylindrical holes
All testimonials

Bespoke quote in 24 hours

Get It Made is proud to provide a human service. Get a quote and free design review by an experienced engineer to see how we make manufacturing simple.

Cookie Settings
By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyse site usage, and assist in our marketing efforts. View our Privacy Policy for more information.